
phpipam-pyclient Documentation
Release 0.1

Vinicius Arcanjo

Feb 22, 2022

Contents

1 Introduction 1
1.1 Testing . 1

2 Installation 3
2.1 via Github . 3

3 Configuration 5

4 Usage 7
4.1 New Features . 9

i

ii

CHAPTER 1

Introduction

phpipam-pyclient is a REST-client CLI tool to interface with PHPIpam REST API. phpipam-pyclient leverages python
fire and requests under the hood, some high level functions have been implementend to allow the user to quickly query
certain information about the devices on PHPIpam. In addition, you can use this library to build your Ansible inventory
by filtering a field/column of the devices on PHPIpam.

1.1 Testing

Integration tests are implemented with pytest validating both Python2.7 and Python3.5 on a docker-based environment,
in two stages:

• installation: validates a installation from strach with selenium.

• client-server API: validates this phpipam-pyclient with the phpipam REST API.

The following versions of PHPIpam are being tested on GitLab CI:

• 1.3.2

• 1.3.1

• 1.3

1

phpipam-pyclient Documentation, Release 0.1

2 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 via Github

1 - Git clone

git clone https://github.com/viniarck/phpipam-pyclient.git
cd phpipam-pyclient

2 - Install Python requirements dependencies, either via user install or virtualenv:

2.1 - pip user install:

pip install -e .

2.1 - or virtualenv:

virtualenv -p python3.6 .venv
source .venv/bin/activate
pip install -e .

3

phpipam-pyclient Documentation, Release 0.1

4 Chapter 2. Installation

CHAPTER 3

Configuration

In order to connect to PHPIpam REST API you have to edit the phpipam_pyclient/config.json file, which
by default comes with the following configuration:

{
"base_url":"http://ipam/api",
"api_name":"testing",
"user":"admin",
"passwd":"my-secret-pw"
}

• base_url: This is the url of PHPIpam API http(s)://<phpipam_server>/api, make sure to adjust
either http or https and the hostname of the PHPIpam server accordingly.

• api_name: The name of the API you have enabled on PHPIpam settings.

• user: username that will be authenticated on PHPIpam

• passwd: user’s password

Optionally, if you don’t want to specify another location for the config.json file, you can set the environment variable
PHPIPAM_PYCLIENT_CFG_FILE which has higher precedence.

Note: When you enable API either choose ssl if you have https enabled or leave it as None for http. I haven’t tested
the crypto option.

5

phpipam-pyclient Documentation, Release 0.1

6 Chapter 3. Configuration

CHAPTER 4

Usage

phpipam-client leverages python fire to implement the CLI, you can start by checking what options are available:

Note: Before you use this client, the PHPIpam server has to be up and running, since it’s going to connect to it.

root@c0630eda943f:/app# phpipam-pyclient
Type: PHPIpamClient
String form: <phpipam_pyclient.phpipam_pyclient.PHPIpamClient object at
→˓0x7f8b49a44550>
Docstring: PHPIPam Python API Client

Usage: phpipam-pyclient -
phpipam-pyclient - add-device
phpipam-pyclient - ansible-inv-endpoint-field
phpipam-pyclient - auth-session
phpipam-pyclient - list-device-fields
phpipam-pyclient - list-devices
phpipam-pyclient - load-config
phpipam-pyclient - version

Since I don’t have any devices yet, let me start off by checking the arguments of the add-device function:

• input:

phpipam-pyclient - add-device -- --help

• output:

root@c0630eda943f:/app# phpipam-pyclient - add-device -- --help
Type: method
String form: <bound method PHPIpamClient.add_device of <__main__.PHPIpamClient object
→˓at 0x7fd016505828>>
File: phpipam_pyclient.py
Line: 125

(continues on next page)

7

phpipam-pyclient Documentation, Release 0.1

(continued from previous page)

Docstring: Adds device to PHPIpam given a dictionary that represents a device
i.e., it should have these keys at least
'ip', 'hostname', 'description'

:device: dictionary that represents a device
:Returns: REST post status code

Usage: phpipam-pyclient - add-device [DEVICE]
phpipam-pyclient - add-device [--device DEVICE]

Let’s add three devices on PHPIPam:

• input:

phpipam-pyclient add-device --device '{hostname:"server1",ip:"1.2.3.4",description:
→˓"backend"}'
phpipam-pyclient add-device --device '{hostname:"server2",ip:"1.2.3.5",description:
→˓"backend"}'
phpipam-pyclient add-device --device '{hostname:"server3",ip:"1.2.3.6",description:
→˓"frontend"}'

• output

Note all REST calls returned 201 (OK) status code:

root@c0630eda943f:/app/phpipam_pyclient# phpipam-pyclient add-device --device '
→˓{hostname:"server1",ip:"1.2.3.4",description:"backend"}'
201
root@c0630eda943f:/app/phpipam_pyclient# phpipam-pyclient add-device --device '
→˓{hostname:"server2",ip:"1.2.3.5",description:"backend"}'
201
root@c0630eda943f:/app/phpipam_pyclient# phpipam-pyclient add-device --device '
→˓{hostname:"server3",ip:"1.2.3.6",description:"frontend"}'
201
root@c0630eda943f:/app/phpipam_pyclient#

Now, let’s list all devices on PHPIPam:

• input:

phpipam-pyclient list-devices

• output:

root@c0630eda943f:/app/phpipam_pyclient# phpipam-pyclient list-devices
{"sections": "1;2", "snmp_v3_priv_protocol": "none", "snmp_queries": null, "hostname
→˓": "server1", "snmp_port": "161", "rack_size": null, "id": "1", "location": null,
→˓"snmp_v3_priv_pass": null, "description": "backend", "snmp_v3_auth_pass": null, "ip
→˓": "1.2.3.4", "editDate": null, "snmp_v3_ctx_name": null, "snmp_timeout": "500",
→˓"snmp_v3_auth_protocol": "none", "rack_start": null,"snmp_v3_ctx_engine_id": null,
→˓"rack": null, "type": "0", "snmp_version": "0", "snmp_community": null, "snmp_v3_
→˓sec_level": "none"}
{"sections": "1;2", "snmp_v3_priv_protocol": "none", "snmp_queries": null, "hostname
→˓": "server2", "snmp_port": "161", "rack_size": null, "id": "2", "location": null,
→˓"snmp_v3_priv_pass": null, "description": "backend", "snmp_v3_auth_pass": null, "ip
→˓": "1.2.3.5", "editDate": null, "snmp_v3_ctx_name": null, "snmp_timeout": "500",
→˓"snmp_v3_auth_protocol": "none", "rack_start": null,"snmp_v3_ctx_engine_id": null,
→˓"rack": null, "type": "0", "snmp_version": "0", "snmp_community": null, "snmp_v3_
→˓sec_level": "none"} (continues on next page)

8 Chapter 4. Usage

phpipam-pyclient Documentation, Release 0.1

(continued from previous page)

{"sections": "1;2", "snmp_v3_priv_protocol": "none", "snmp_queries": null, "hostname
→˓": "server3", "snmp_port": "161", "rack_size": null, "id": "3", "location": null,
→˓"snmp_v3_priv_pass": null, "description": "frontend", "snmp_v3_auth_pass": null, "ip
→˓": "1.2.3.6", "editDate": null, "snmp_v3_ctx_name": null, "snmp_timeout": "500",
→˓"snmp_v3_auth_protocol": "none", "rack_start": null,"snmp_v3_ctx_engine_id": null,
→˓"rack": null, "type": "0", "snmp_version": "0", "snmp_community": null, "snmp_v3_
→˓sec_level": "none"}

Sweet! What if I wanted to export these devices as an Ansible inventory? It can group Ansible servers by their
description, for example:

• input:

phpipam-pyclient ansible-inv-endpoint-field devices/ "description"

Note: Essentially, this command queries the devices/ endpoint and it’ll group all hostnames according to their
description, you could group by any other attribute if you wanted.

root@c0630eda943f:/app/phpipam_pyclient# phpipam-pyclient ansible-inv-endpoint-field
→˓devices/ "description"
[frontend]
server3

[backend]
server1
server2

From this point forward, Ansible all the way to do whatever you need. But, what if you wanted to check all the other
available fields what you could filter? If you had custom fields they would show up here too.

• input:

phpipam-pyclient list-device-fields

• output:

root@c0630eda943f:/app/phpipam_pyclient# phpipam-pyclient list-device-fields
Type: dict_keys
String form: dict_keys(['rack_size', 'snmp_v3_priv_pass', 'snmp_community', 'snmp_v3_
→˓priv_protocol', 'sections', 'snmp_v3_ctx_name', 'snmp_v3_sec_level', 'editDate',
→˓'rack_start', 'hostname', 'snmp_version', 'snmp_queries', 'snmp_v3_auth_pass',
→˓'snmp_timeout', 'id', 'rack', 'description', 'location', 'snmp_v3_ctx_engine_id',
→˓'ip', 'snmp_v3_auth_protocol', 'type', 'snmp_port'])
Length: 23

Usage: phpipam_pyclient.py list-device-fields
phpipam_pyclient.py list-device-fields isdisjoint

root@c0630eda943f:/app/phpipam_pyclient#

4.1 New Features

On version 1.0.0, released in Dec 2021, new filtering and Ansible grouping capabilities have been added:

4.1. New Features 9

phpipam-pyclient Documentation, Release 0.1

Use and combine multiple filters (as a logic and operator) to filter based on any field that they have, for instance, let’s
say you wanted to filter if ‘ip’ fields contains the string ‘1.2.3’ and also the ‘description’ is equal to ‘backend’. These
filter options are also available in the ansible_inv_endpoint_field command, here’s it’s being used on the
list_devices command:

phpipam-pyclient list_devices --fields="['hostname', 'ip', 'description']" --filters=
→˓"[{'type': 'contains', 'value': '1.2.3', 'field': 'ip'},{'type': 'eq', 'field':
→˓'description', 'value': 'backend'}]"

{"hostname": "server1", "ip": "1.2.3.4", "description": "backend"}
{"hostname": "server2", "ip": "1.2.3.5", "description": "backend"}

If you need numerical comparisons, you can use the filter type as ge, gt, le, gt which respectively means
greater than or equal, greater than, less than or equal, greater than. Another feature that was added was the support
for adding Ansible default variables when generating the inventory, for instance, let’s say you want to use these filters,
group them by their description, but also, for any hosts that have the description as frontend you want
to set the ansible_port as 2222, and ansible_user as some_user:

phpipam-pyclient ansible_inv_endpoint_field devices/ description --filters="[{'type':
→˓'contains', 'value': '1', 'field': 'ip'}]" --ansible_kwargs="{'frontend': {'ansible_
→˓port': 2222, ' ansible_user': 'some_user'}}"

[backend]
server1
server2

[frontend]
server3 ansible_port=2222 ansible_user=some_user

On top of that, if you also only want to include certain Ansible groups you can leverage the --include_groups op-
tion, notice that compared to the previous example, only the frontend group, that was grouped by their description
is in the generated output:

phpipam-pyclient ansible_inv_endpoint_field devices/ description --filters="[{'type':
→˓'contains', 'value': '1', 'field': 'ip'}]" --ansible_kwargs="{'frontend': {'ansible_
→˓port': 2222, 'ansible_user': 'some_user'}}" --include_groups="['frontend']"

[frontend]
server3 ansible_port=2222 ansible_user=some_user

10 Chapter 4. Usage

	Introduction
	Testing

	Installation
	via Github

	Configuration
	Usage
	New Features

